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1. INTRODUCTION 
A convenient way to describe particle beam behavior is through the use of statistics.  For instance, 

instead of a full multiple-particle simulation we can propagate the statistical properties of the beam down 
the beamline, such as its various statistical moments.  Of course such an approach does not provide as 
much information as a multiple-particle simulation, however, it is computationally much less expensive.  
The approach is that taken by the simulation codes TRANSPORT [2] and TRACE3D [5].  The current note 
describes this type of simulation technique in some detail, in particular, the beam physics background, 
computation of the self-force effects on the dynamics (i.e., space charge effects), and numerical 
approaches.   

It is our intention to describe in some detail the theory and technique for simulation of particle beam 
envelopes.  We hope that this unified presentation will serve as a collective documentation for such 
techniques that are already in common practice.  By fully documenting both the theory and numerical 
techniques one can more readily develop extensions to the theory and techniques and draw conclusions 
toward the validity of the resulting simulations.  For example, we could extend the theory here to include 
noise from machine errors, or use the theory included here to determine which regimes the simulations are 
most accurate.  Because our interests are primarily in the control and automation of accelerator systems, it 
is important to us that we have a clear understanding of the simulation techniques being employed to 
develop robust control applications.  The techniques presented here are fast.  Thus, not only are they useful 
for off-line accelerator system design, they are also valuable for presenting on-line model references for 
developing control applications. 

Although we cover the theory and technique of beam envelope simulation in detail, we mention 
nothing about how one might actually implement such a simulation engine.  In a companion article we 
present a modern software architecture for performing these simulations [16].  This architecture has already 
been implemented and is in current use, embedded into the high-level control system for the Spallation 
Neutron Source (SNS) accelerator. 

1.1. Overview 
We begin with the equations of motion for single particle trajectory under Lorentz forces.  These 

equations are tailored to beam physics by using the path length along the design trajectory as the 
independent variable, rather than time.  By employing Liouville's theorem we find it possible to derive 
evolution equations for the beam ensemble's moments from the equations for single particle motion.  There 
are two unresolved terms in these equations, both determining the effects of the beam's self fields on the 
moment dynamics.  Specifically, they are the cross-moments of the self electric field and the phase 
coordinates.  If we assume that the beam has ellipsoidal symmetry in configuration space, it is possible to 
compute one of these moments analytically in terms of elliptic integrals (the moment involving the spatial 
coordinate).  Upon computing this moment we find that it depends only weakly on the actual profile of the 
ellipsoidal distribution.  Acknowledging this fact we typically model all laboratory beams with an 
equivalent uniform beam having the same second moments; the uniform beam is preferred since it has 
well-defined boundaries.  From there we take two different approaches in the description of the statistical 
evolution of the beam.   

From the moment equations we can derive a convenient set of equations that describe the behavior of 
the rms beam envelopes (assuming a centered beam).  We avoid the remaining unknown field moment by 
introducing the definition of rms emittance in the equation set.  By doing so, however, we implicitly make 
the assumption that the rms emittance is either constant or it is a function whose values are known a priori.  
This assumption is usually not too restrictive, since it is known that rms emittances are invariants of the 
motion if all forces on the beam are linear.  The resulting set of equations for rms envelopes can also be 
rewritten for the equivalent uniform beam, and is usually seen that way in the literature.  They form a 
convenient closed set of equations for studying beam dynamics.  However, as pointed out they cannot be 
used to study nonlinear effects acting on the beam. 

The alternate approach to developing a description of the beam's statistical evolution is through the use 
of transfer matrices.  While the previous approach results in a set of coupled ordinary equations that are 
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continuous in nature, this technique is more of a discrete approach.  Generally, the continuous 
representation is most convenient for analytic study while the discrete representation is well suited for 
computer simulation.  The transfer matrix technique is based upon the observation that whenever all forces 
on a particle are linear, multiplying the particle's coordinate vector by a matrix can represent the action of 
any beamline element.  This matrix is determined by the properties of the element and is called the transfer 
matrix for the element.  If we represent all the second-order moments of the beam by a symmetric matrix, 
then the effects of the element on these statistical quantities can be determined by a transpose conjugation 
with the transfer matrix.  This technique is easy to implement on a computer.  A transfer matrix can also be 
used to model the action the beam's space charge if we use a linear fit to the self electric field of the beam.  
We do this by employing a weighted linear regression, where the weighting factor is the beam distribution.  
This gives us a fit that is more accurate in regions of higher beam density.  It turns out that this field 
approximation also conforms to the assumption of constant rms emittance, as done in the previous 
description of the beam dynamics.  So we essentially have an equivalent representation as before, only the 
beam is propagated discretely with transfer matrices. 

1.2. Outline 
In Section 2 we review the basic physics background necessary for this analysis.  Mostly this entails 

placing the common physical concepts in the context of accelerator physics.  In particular we cover the 
design trajectory, phase space, and the equations of motion for an accelerator system.  Section 3 introduces 
the basic statistical concepts on which we rely for our simulation technique.  There we show how to 
transform the equations of motion for individual particles into evolution equations for statistical properties 
of the beam.  Section 4 describes quantities and parameters particular to particle beam physics.  The most 
important of these concepts is probably the rms envelopes and the Courant-Snyder parameters for 
describing the phase space distribution of the beam.  We also cover the mean value vector and the 
covariance matrix, convenient methods for representing the statistical properties of the beam.  Ellipsoidal 
beams are treated in Section 5, that is, beam distributions having ellipsoidal symmetry.  Specifically, we 
compute the space charge effects for ellipsoidal beams.  We see that it is possible to determine the effects 
of the self-forces analytically in terms of elliptic integrals for distributions having ellipsoidal symmetry in 
configuration space.  Sections 6 and 7 cover simulation techniques for bunched beams with ellipsoidal 
symmetry.  Section 6 treats the envelope equations for bunched beams where we develop the coupled set of 
ordinary differential equations describing the evolution of the equivalent uniform beam.  Section 7 presents 
the transfer matrix approach to bunched beam envelope simulation.  This technique, although somewhat 
less obvious, is more suited to numerical simulation and is also more general than the envelope equation 
approach as it can treat coupling between the phase planes.  Finally we conclude with Section 8 and present 
some transfer matrices for common beamline elements in Appendix A. 

sx z

y

design trajectory

synchronous particle

beam bunch

Figure 1: design trajectory and coordinate system 

2. PHYSICS BACKGROUND 
Here we present the basic physics 

background for our analysis.  
Ultimately, we develop the equations 
of motion for individual beam particles 
and we do so in a form suitable for 
beam physics.  We also touch upon the 
various unit conversions and 
conventions used in the beam physics 
literature. 

2.1. The Design Trajectory  
We shall assume a beam transport 

or accelerator system that has a 
specified design trajectory.  This 
configuration is shown in Figure 1.  
The distance along this design 
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trajectory is given by the independent variable s.  There also exists the synchronous particle, which has a 
specified design velocity v(s) at each point s on the design trajectory.  The relative velocity β=v/c and 
relativistic parameter γ=1/(1-β2)1/2 are always given with respect to this design velocity, unless otherwise 
noted.  With respect to the synchronous particle, we construct a system of coordinates (x,y,z), that is, the 
synchronous particle is at the origin.  The coordinates x,y,z represent displacements from the synchronous 
particle in the x, y, z directions, respectively.  Locally, the z-coordinate is always aligned with the design 
trajectory.  Specifically, the tangent vector of the design trajectory always points in the z-direction.  Thus, 
the xy-plane represents the transverse plane while the z-direction is the longitudinal direction of beam 
propagation (in a local sense).  Note that the coordinates (x,y,z) are not the inertial frame of the beam, they 
are laboratory coordinates that follow the beam. 

2.2. Phase Space 
We form the phase space (or state space) of the particle by considering the normalized momenta 

(x',y',z') with respect to the synchronous particle.  Let p(s)=γmv(s) represent the momentum magnitude of 
the synchronous particle.  Then the x and y plane relative momentum x' and y' are given by 
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where the over dot denotes differentiation with respect to time.  For the z plane the situation is different 
since the coordinate z is defined to be the difference in longitudinal position from the synchronous particle, 
which is traveling at velocity v.  Therefore,  
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where ∆v is the difference in velocity v of the synchronous particle, ∆p is the difference in longitudinal 
momentum p of the synchronous particle, and the last equality comes from relativistic mechanics (see 
below).  Thus, the complete phase space coordinates for a particle at location s is given by (x,x',y,y',z,z';s).  
For conciseness, it is convenient to denote points in phase space by the vector z.  That is, 

(3) . ),,,,,( zzyyxx ′′′≡z

This coordinate space, specifically with the normalized momenta x', y', and z', is also commonly called 
trace space in the literature. 

2.3. The Longitudinal Phase Plane  
Since the z phase plane has several different descriptions in the literature, we shall consider it in more 

detail.  There are several different coordinate systems commonly used to describe this phase plane.  
Because we are considering position and momentum in the direction of propagation it is necessary to 
consider relativistic effects when converting between these descriptions.  The following equations relate 
differential changes in common relativistic parameters: 
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where W is the kinetic energy of the particle given by (γ-1)mc2. 
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Commonly used coordinates used in lieu of z are ∆φ and ∆t.  The coordinate ∆φ is the RF phase 
difference from the synchronous particle, while ∆t is the difference in arrival time from the synchronous 
particle.  To convert from ∆φ in degrees, or ∆t in seconds, to z in meters use the following formulae: 

(5) 
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where T is the period of the RF and λ is the free-space wavelength of the RF.  Note that negative values of 
∆φ indicate a phase difference ahead of the synchronous particle while negative values for ∆t indicate 
arrival times before the synchronous particle.   

Coordinates that alternately describe z' are ∆p/p and ∆W.  The quantity ∆p is the difference in 
momentum from the synchronous particle so that ∆p/p is the normalized difference in momentum.  
Likewise, ∆W is the difference in kinetic energy from the synchronous particle.  To convert from ∆p/p in 
radians or ∆W in electron volts (Joules) to z' in radians use the relation 
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where W is the beam's kinetic energy.  These relations follow from the facts that 
∆p=mc∆(βγ)=γ3mc∆β=pγ2(∆β/β) and ∆W=mc2∆γ=β2γmc2(∆p/p). 

2.4. Equations of Motion 
Newton's second law gives the equations of motion for individual particles of the beam.  We shall 

make all our calculations in the laboratory frame.  Recall that the coordinates (x,y,z) are actually the 
displacements from the synchronous particle on the design trajectory.  In our case the familiar F=dp/dt 
appears as 
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where F is the force on a particle, γ is the relativistic factor, m is the particle mass, c is the speed of light, 
β≡v/c where v is velocity of the synchronous particle along s, r≡(x,y,s+z) is the position vector, and the 
primes indicate differentiation with respect to s.  To derive the second line of the above note that the 
velocity vector can be expressed as v=βc(x',y',z'+1).  The second term of that equation is nonzero only 
when particles are accelerated.  Many times we can assume that the quantity γ' is negligible, for example in 
transport systems or between RF gaps. 

The Lorentz force law containing all the electromagnetic fields gives the forces F on a beam particle.  
We decompose the force vector F into the superposition of the applied external forces Fa and the self-forces 
Fs caused by the electromagnetic fields of the beam itself.  The applied forces are assumed to be linear by 
design, since it is known that nonlinear forces can degrade beam quality.  Thus,  

(8) , rΚFa ⋅−= )(s

where K≡(κx(s),κy(s),κz(s)) represents the action of external beamline components.  For example, the 
focusing force in the x-direction applied by a magnetic quadrupole lens is given by 
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where By is the y-directed magnetic field.  Thus, κx=qβc[∂By/∂x]. 
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The self-forces Fs are the electromagnetic fields produced by the beam itself.  We have 

(10) ),(][),( scqsq rBarrΕF szss ×+′+= β , 

where Es is the self electric field, Bs is the self magnetic field, and az is the unit vector in the direction of 
the design trajectory (i.e., it points in the z-direction).  The individual velocities around the synchronous 
particle, given by r', is typically negligible compared to the collective motion of the bunch.  Consequently 
we drop the r'. This action leads to magnetic self-fields that are directly proportional to the electric self-
fields in the perpendicular direction.  The reason for this situation is that the collective motion along the 
design trajectory produces the magnetic fields.  (Forces from longitudinal magnetic fields will be zero by 
the cross product.)  We have 
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β , 

where B⊥ is the magnetic field perpendicular to az.  Consequently, the perpendicular force has the form 
F⊥=(1-β2)E⊥, where E⊥ is the perpendicular self electric field.  The parallel self-force depends only on the 
parallel self electric field.  Collecting these results, the forces in all three directions can be written 
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The resulting equations of motion for a beam particle are 
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Now we simplify the equations with some standard definitions.  First, let 
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which are the linear proportionality constants for the external focusing.  We further reduce the above 
equation set by introducing a standard parameter in beam physics, the beam perveance K.  This is a 
measure of the space-charge effect and we define it as 
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where ε0 is the permittivity of free space and N is the total number of particles in the beam bunch.  This 
definition is somewhat different than that of other authors [21][22]; it is more useful for the present 
discussion.  Unfortunately, there is no standard definition for the bunched beam perveance, as there is for 
continuous beams.  The resulting equations of motion are 

 8



LA-UR-02-4979 
 

(16) 

.
2

,
2

,
2

022

02

02

zz

yy

xx

E
qN

Kzkzz

E
qN

Kykyy

E
qN

Kxkxx

πε
γ

γ
γ

γ
γ

πε
γ
γ

πε
γ
γ

+
′

−=+′
′

+′′

=+′
′

+′′

=+′
′

+′′

 

Note that qN is the total charge of the beam bunch, usually denoted by Q.  It can also be expressed in terms 
of the bunched beam current I as 

(17) , fIQ /=

where f is the drive frequency of the RF cavity. 

3. STATISTICS BACKGROUND 

3.1. The Density Function 
Assume that the particle beam can be described by a density distribution function f of the particles' 

phase space coordinates (x, x', y, y', z, z') and position along the design trajectory s.  That is, the entire 
ensemble of beam particles is represented by the function f.  The function f describes the distribution of the 
beam's mass (or charge) in phase space at each location s along the beamline.  It can also be interpreted as a 
probably density function characterizing the probability that any particle occupies a particular region of 
phase space at location s.  Thus, the probably that a particle lies in the infinitesimal phase space volume 
dxdx'dydy'dzdz' centered at (x, x', y, y', z, z') and located at position s along the beamline is 

(18) . ''');',,',,',( dzdzdydydxdxszzyyxxf

Typically we assume that the particle ensemble is populous enough to be represented accurately by a 
continuous f.  However, it is always possible to formulate a discrete ensemble by assuming that f is a 
summation of displaced Dirac delta functions.  Finally, note that the function f(x,x',y,y',z,z';s) contains all 
the information of the beam but requires an enormous amount of storage space to represent on a computer, 
it is a function of seven independent variables.   

The evolution of the function f is governed by the Vlasov equation, which incorporates the equations 
of motion and the Lorentz force equation.  It is a partial differential equation containing partial derivatives 
of all seven independent variables and is typically intractable to solve in general.  We shall avoid the 
Vlasov equation by propagating only a small subset of the distribution's moments.  For this we require only 
the equations of motion and Liouville's theorem.   

3.2. Liouville's Theorem 
Liouville's theorem states that the total derivate of f with respect to s along particle trajectories is zero, 

or formally 
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where x''=dx'/ds, etc. 

This is essentially a statement of the conservation of mass.  The practical considerations where the 
theorem holds true are for collisionless systems where there are ample enough particles such that the self-
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fields are represented accurately by smooth functions.  That is, there is no "graininess" of individual 
particles; the distribution behaves much like a fluid.  Otherwise, Liouville's theorem is true only for 
distribution functions on 6N dimensional phase space, where N is the number of particles. 

We mention in passing that by substituting the Lorentz force laws for x'', y'', and z'' in the above we 
obtain the Vlasov equation.  Thus, the trajectories {z(s)} where the above holds actually represent the 
characteristic lines of the Vlasov equation. 

3.3. Moments of the Distribution 
Moments of the distribution are function averages on phase space, weighted with respect to the 

distribution function.  For example, let g(x, x', y, y', z, z') be some arbitrary function on phase space, then 
the moment of g, denoted 〈g〉, is given by 

(21) 
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where 

(22) , ∫= zz 6);( dsfN

is the total number of particles in the ensemble and where the integrations are taken over all of phase space.  
(In mathematical parlance, we treat f as a measure on phase space.)  Note that with this definition 〈g〉 is still 
a function of s because f is a function of s. We shall be concerned foremost with the moments of phase 
space monomials, that is, moments of the form 〈x〉, 〈x'〉, 〈x2〉, 〈xx'〉, 〈x'2〉 and their counterparts for the other 
phase space coordinates.  Theses moments represent the evolution of the beam's statistics, in particular the 
center of mass (average position and velocity) and the rms envelopes of the beam. 

Notice also that in the above definition 〈⋅〉 is normalized.  It is normalized by the total number of 
particles, a factor 1/N, so that the moment of 1 is 1, that is 〈1〉=1. 

3.4. Moment Equations 
Liouville's theorem enables us to formulate evolution equations for the moments of the beam.  

Specifically it allows the moment operator 〈⋅〉 and the differentiation operator d⋅/ds to commute.  For 
example, if g(z;s) is a function of the phase space coordinates and s, then the derivative of 〈g〉 with respect 
to s is given as 
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Thus, we are able to move differentiation with respect to s within the moment operator and vice-versa. 

Now we may average the equations of motion with respect to the beam ensemble then employ 
Liouville's theorem to commute the differentiations with respect to s.  In the x-plane, we have for the first 
moments 

(24) 
.

2
,

02
xx E

qN
Kxxkxx

xx
πε

γ
γ

+′
′

−−=′′=′′

′=′

 

The quantity 〈Ex〉 is zero for symmetric charge distributions by pair-wise cancellation.  Since we assume 
that the beam has an ellipsoidally symmetric charge distribution in the sequel, we neglect this term. We 
then have the following equations for the first-order moments: 
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Notice that the above equations are independent of the self-fields and represent the equations of motion 
for the beam's center of mass; they form a complete set.  Thus, these equations may be propagated 
independently.  To simplify the analysis in what follows, we often assume a centered beam to make 
computations easier.  We can then displace this centered beam according to the above equations describing 
the centroid motion.   

Now consider the second-order moments of the form 〈x2〉, 〈xx'〉, 〈x'2〉.  Proceeding as before, the 
equations for the x-plane moments are 
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There exist similar equations for the y moments.  The z second moment equations are 
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In general we may also have cross moments of the form 〈xy〉, 〈x'y〉, 〈xy'〉,  and 〈x'y'〉.  The cross moments 
would typically result from bending magnets or misaligned beamline elements. 

From this point two differing approaches to simulation are typically employed: 1) we use the second-
order moment equations to develop a set of ordinary differential equations describing the rms envelopes of 
the beam, this technique is covered in Section 6.  2) We propagate the entire set of second-order moments 
in the form of a symmetric correlation matrix, this technique is covered in Section 7.  The later approach is 
more general than the former, since it can treat rotated ellipsoids and external coupling between phase 
planes. 

4. BEAM PHYSICS 
In this section we outline quantities and concepts that are particular to beam physics.  Specifically, we 

cover rms envelopes, rms emittance, and the rms phase space ellipse.   We also consider a linear 
approximation to the self-fields that is particularly important for beam physics calculations. 

4.1. The RMS Envelopes 
Here we introduce the notion of rms beam envelopes, which is fundamental in much of the beam 

physics literature.  The rms envelopes of a beam represent the boundary of the beam in a collective, or 
statistical sense.  As we see in the sequel, for ellipsoidally symmetric beams this statistical behavior is 
almost independent of the actual profile of the beam distribution.  That is, the rms envelopes of many 
beams behave the same regardless of the actual distribution. 

First, let us consider the mean values of the particle distribution.  We use zyx ,,  to denote theses first-
order spatial moments, that is  
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(28) zzyyxx === ,, . 

These values are the positions of the center of mass in the x, y, and z directions, respectively.  That is, they 
are the coordinates of the beam centroid.   

Now we consider the rms envelopes of the beam.  To do so we first introduce the following 
definitions: 

(29) 

.~

,~

,~

2/12

2/12

2/12

zz

yy

xx

≡

≡

≡

 

In the literature these quantities are commonly referred to as the rms envelopes of the beam.  It is important 
to point out that this is only true for a centered beam.  The true rms envelopes of a beam are actually the 
standard deviations of the density distribution f.  Denoting the standard deviations in the x, y, and z 
directions as σx, σy, σz, respectively, they are defined 

(30) 

[ ]
[ ]
[ ] ,)(

,)(

,)(

2/1222/12

2/1222/12

2/1222/12

zzzz

yyyy

xxxx

z

y

x

−=−≡

−=−≡

−=−≡

σ

σ

σ

 

or 

(31) [ ] [ ] [ ] 2/1222/1222/122 ~,~,~ zzyyxx zyx −=−=−= σσσ . 

Note that when the beam is centered, that is when 0=== zyx , the rms envelopes σx, σy, σz are equal to 
the quantities zyx ~,~,~ .  This is the situation most often encountered in the literature.  Typically a centered 
beam is assumed to simplify computations, particularly for the moments 〈xEx〉, 〈yEy〉, and 〈zEz〉.  A common 
approximation in simulation is the assumption that the beam is centered when computing the evolution of 
the second moments zyx ~,~,~ ; the offsets zyx ,, are computed independently to form the complete beam 
state.   

4.2. RMS Emittance 
One particularly important quantity in beam physics is the rms emittance, usually denoted ε~ .  This is a 

figure of merit indicating the area in each phase plane that the rms beam envelope occupies.  The rms 
emittance is a function of the second moments, for each phase plane it is defined 

(32) 

[ ]
[ ]
[ ] .~

,~

,~

2/1222

2/1222

2/1222

zzzz

yyyy

xxxx

z

y

x

′−′≡

′−′≡

′−′≡

ε

ε

ε

 

It is known that whenever all forces acting on the beam are linear and there is no acceleration, the rms 
emittance is an invariant of the motion [7][10][12].  An increasing emittance is usually indicative of a loss 
in beam quality.  Thus, the rms emittance of a beam typically increases whenever unwanted nonlinear 
forces are encountered.   

When the beam is accelerated the transverse rms emittances always decrease.  This condition is simply 
an artifact of the definitions of x' and y' and does not imply any decrease in random transverse kinetic 
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energy (temperature).  Since x'=px/p, it decreases with increasing longitudinal momentum p, which in turn 
decreases the rms emittance.  To see this consider the x phase plane and assume that the self-fields can be 
represented as the linear function Ex=ax, where a is a real number.  Now simply differentiate the definition 
of rms emittance 

(33) 
,~2

,2~

2

22222

x

x xxxxxxxx
ds
d

ε
γ
γ

ε

′
−=

′′′−
′

′+′
′

=
 

where the second line is obtained by substituting the derivatives from Eqs. (26).  The solution to this 
equation is 

(34) 
)(

~
)(~

2

2
0,2

s
s x

x γ

ε
ε = , 

where 0,
~

xε is the initial value.  Thus, we can see outright that when the beam energy increases the 
transverse rms emittances decrease.  Applying the same procedures to the longitudinal plane we get a 
different equation 

(35) zzz
ds
d

zz ′
′

+
′

−=
γ
γε

γ
γε 2~2~ 22 . 

Thus, if the RF phase is misaligned during acceleration, causing a nonzero 〈z〉, it is actually possible to 
experience emittance growth in the longitudinal plane. 

To alleviate the situation of decreasing transverse emittances with acceleration we may alternately use 
the normalized rms emittances, typically denoted nε

~ .  These emittances are defined as [21] 

(36) .~~~~,~~
,,,, zznyynxxn εβγεεβγεεβγε ≡≡≡  

Performing a similar analysis as with the rms emittances using similar assumptions, we find that the 
normalized rms transverse emittances behave as 

(37) 0,,,
~)()(~

xnxn ss εβε = , 

where 0,,
~

xnε is an arbitrary constant.  Thus, the transverse normalized rms emittances actually increase with 
increasing beam energy.  However, once the beam velocity approaches c these emittances level off with 
increasing beam energy. 

In our phase space coordinates the units of rms emittance are meter-radians.  However, recalling that 
there are several alternate coordinate systems for the z phase plane, it is common to find emittance values 
for this plane given in several different units.  When the z phase plane coordinates are (z,∆p/p) the units are 
meter-radians.  When the coordinates are (∆φ,∆W) the units are degrees-electron volts.  Finally, when the 
coordinates are (∆t, ∆W) the units are seconds-electron volts.  To convert between theses units to meter-
radians we substitute the coordinate conversion formulas (5) and (6) into the above definition for zε

~ .  The 
results are 

(38) 

,)eV(sec~
,)eV(deg~

,)rad-m(~)radm(~

sec

deg

−=

−=

=− ∆

z

z

zpz

C

C

C

ε

ε

εε

 

where the conversion factors C∆p, Cdeg and Csec are defined 
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(39) 
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where ER=mc2/q is the rest energy of the beam particles in electron volts.  Note that the beam energy W 
must also be given in electron-volts. 

4.3. Courant-Snyder Parameters for the RMS Ellipse 
When modeling beam distributions, the projections of the distributions onto each phase plane are 

represented ideally by an ellipse.  Here we introduce the Courant-Snyder, or Twiss, parameters often found 
in the literature.  These parameters describe the projections of the beam distribution onto the phase space 
planes.  In particular, we shall describe the ellipse relating to the second-order moments of the beam (the 
rms moments).  This ellipse is congruent to the phase space ellipse of the equivalent uniform beam.  To 
make explicit calculations we consider the x phase plane with the coordinates (x,x').  There are analogous 
results for the y and z phase planes.   

x

x’

xxεβ ~

xxεγ ~

x

x
x β

εα
~

−

Figure 2: rms phase space ellipse 

Consider an ellipse centered in x phase space as shown in 
Figure 2.  The general equation for such an ellipse can be 
expressed 

(40)  xxxx xxxx εβαγ ~2 22 =′+′+ , 

where αx, βx, γx are known as the Courant-Snyder parameters for 
the x phase plane.  These parameters are not independent; they 
are related through the equation 

(41) . 12 =− xxx αγβ

This relation enforces the area enclosed by the ellipse to be xεπ
~ .  

It is our desire to relate this ellipse to the rms quantities of the 
beam distribution.   

We can solve Eq. (40) for particular values of x and x' in the phase space as shown in Figure 2 (for 
example, see [21] and [22]).  Consider the projections of this ellipse onto the x and x' axes.  We want the 
maximum extent of these projections to be equal to the rms quantities for x and x', respectively.  This 
condition leads to the definitions 

(42) 

,~

,~
,~

2/12

2/12

x

xx

x

xx

xx

xx

′≡

′−≡

≡

εγ

εα

εβ

 

where the second equation follows from Eq. (41) and the definition of rms emittance (32).   

If the coordinates for the longitudinal phase plane are given as (∆φ,∆W), the conversion of the Courant-
Snyder parameters to the (z,z') units is given by the following: 
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(43) 

deg),eV/(1
)1(
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11
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zz
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zz
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where, due to an unfortunate choice of notation, we have β's and γ's representing both relativistic 
parameters and Courant-Snyder parameters.  The grouping of terms was chosen to make the context clear.  
When the longitudinal coordinates are given as (z,∆p/p), the conversion of the Courant-Snyder parameters 
to (z,z') units is  

(44) 

),rad/m(1)rad/m(

,)m/rad()m/rad(
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2

2
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When the longitudinal coordinates are given as (∆t,∆W), the conversion of the Courant-Snyder parameters 
to the (z,z') units is given by 

(45) 

deg).(sec1
1

1)rad/m(
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4.4. The Mean Value Vector and Covariance Matrix 
Here we introduce the vector z and symmetric 6×6 matrix σ.  These quantities contain the state of the 

beam statistics up to second order.  Maintaining consistency with previous notation, let the moments 〈x’〉, 
〈y’〉, and 〈z’〉 be denoted 

(46) zzand ′≡′′≡′′≡′ yyxx , 

respectively.  We accordingly denote the vector of first-order moments as 

(47) 
( ) ,

,
Tzzyyxx ′′′=

≡ zz
 

where the superscript T indicates transposition.  Thus, z is the column vector of mean values for the phase 
space coordinates.  Note that z  can be a function of the path length parameter s.   

When propagating the second-order moment down the beam line it is convenient to work with a matrix 
whose elements are the second-order moments, denoted σ.  Taking the moment of zzT, which is a 
symmetric matrix, forms σ.  For example, considering only the x phase plane whose coordinates are 
represented by the vector 

( 48) . ( )Tsxsxs )()()( ′≡x

The matrix we are describing is given as 〈xxT〉, a sub-matrix of σ, which we denote by σxx.  That is 

(49) 














′
=≡

2

2

'

'

xxx

xxxT
xx xxσ , 
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The matrix σxx is known as the covariance matrix of the x phase plane.  We have one such 2×2 matrix for 
each phase plane, plus we have matrices containing the cross-correlations between phase planes such as 
〈xyT〉, 〈xzT〉, and 〈yzT〉.  The full second-order moment matrix σ has the block matrix form 

(50) 
















=≡

zzzyzx

yzyyyx

xzxyxx

σσσ
σσσ
σσσ

zzσ T , 

where each σαβ is a 2×2 symmetric matrix.  By symmetry we must have σαβ=σβα.  When the motion is not 
coupled between phase planes planes, σ has the simplified block-diagonal form 

(51) , 















=

zz

yy

xx

σ00
0σ0
00σ

σ

where 0 is the 2×2 zero matrix.  Thus, coupling between phase planes is manifested by nonzero values for 
the sub-matrices σxy, σxz, or σyz. 

The vector z  and matrix σ represent all the moments up to order two at each position s along the beam 
line.  Thus, the pair ),( σz contains the complete state of the beam's statistical behavior up to order two.  
This is a convenient representation for the beam statistics when doing simulation. 

The correlation matrix can be expressed in terms of the Courant-Snyder parameters.  Referring to Eqs. 
(42), the σ matrix for the x phase plane can be written 

(52) 
1

~
1

~~
~~ −









=








−

−
=

xx

xx

xxxxx

xxxx
xx βα

αγ

εεγεα
εαεβ

σ . 

There are, of course, analogous representations for the y and z phase planes.  Using the above fact we can 
write Eq. (40) for the rms phase space ellipse compactly in matrix-vector notation as 

(53) . 11 =− xσx
xx

T

4.5. Linearization of the Self-Fields 
It has been found that the evolution of the beam's second moments is determined primarily by the 

linear part of the forces [19].  The nonlinear parts are usually associated with emittance growth of the beam 
(see Section 4.1).  In this analysis we consider only linear forces.  We have already assumed that the 
external forces are linear according to machine design.  The self-fields will, in general, have nonlinear 
components and, thus, the self-forces also will.  Here we describe a linear approximation to the self-fields 
Ex, Ey, Ez which is appropriate for our analysis. 

Consider the self-field in the x-direction, Ex.  We begin by assuming an expansion of the form 

(54) . xaaxEx 10)( +≈

where a0 and a1 are real numbers independent of x.  Terms involving the other phase space coordinates (of 
the form b1y, c1z) are zero with the assumption of symmetry (see Section 5.1).  One method of determining 
the coefficients a0 and a1 is by a minimum variance, or least squares, estimation technique [6][15].  Here 
we seek to minimize the norm of the error in the approximation, which is ||Ex - a0 - a1x||, Ex being the actual 
self-field.  In order that the expansion be most accurate in areas of higher beam concentration, we choose 
the norm ||⋅|| to be 

(55) 
2/12

2/1
62 );()( gdsfgg =



≡ ∫ zzz . 
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It is easily checked that this is a valid norm for functions of the phase space coordinates.  Using the least 
squares fitting technique, we are left with the following Gram system for the coefficients: 

(56) 
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xx
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1

0
2
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The solution to this system is  

(57) ,1, 2120 x
x

x
x

xEaxExa
σσ

=−=  

however, this can be reduced with some practical considerations.   

Since we only use this expansion for space charge effects, we may as well assume that the beam is 
centered.  This action is equivalent to a simple coordinate translation, which does not affect the shape of the 
electric field and, therefore, the moment 〈xEx〉. When the beam is centered (i.e., when 0=== zyx and 

xx
~=σ ) the values of the expansion coefficients are 

(58) 
210 and0

x

xE
aa x== . 

Thus, in this case 

(59) . xaEx 1≈

We have analogous expressions for Ey and Ez so that all the field components have the following linear 
approximations: 

(60) .,,
222
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x ≈≈≈  

Note once again that these linear approximations to the true fields are most accurate in the regions of 
highest beam density.  They are most useful when considering the collective behavior, or rms behavior, of 
the beam. 

4.6. Tune Depression 
To demonstrate the usefulness of the material in the previous section we digress somewhat to show 

how it is related to a common parameter in beam physics known as the tune depression η.  Tune depression 
is a parameter indicating the relative effect of space charge compared to the effects of transverse focusing 
in a beam channel.  To illustrate, return to the original equations of motion (16) for an individual particle.  
Employing the linear approximation to the self-field given by Eq. (59), the approximate equation of motion 
in the x-plane is 

(61) 0
2

1
02 =








−+′

′
+′′ xa

qN
Kkxx x

πε
γ
γ . 

The square root of the quantity in parenthesis is known as the tune-depressed phase advance, or phase 
advance with space charge and is typically denoted k in the literature.  The quantity kx in the above is called 
the phase advance without space charge and is usually denoted k0.  We see that an immediate consequence 
of space charge is the reduction of external focusing.  Consequently, the frequency of the particles' betatron 
oscillations, or betatron tune, decreases with increasing space charge forces.   

Tune depression η is defined 

(62) 0/ kk≡η . 
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It is the factor by which the betatron tune frequency is decreased, having a maximum value of 1 (no tune 
depression) and a minimum value approaching 0 (complete tune depression).  Using the above expansion 
we find the tune depression (in the x plane) to be 

(63) 
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From the above relation we see that the tune depression is a function of the self-fields, the beam energy, 
and the external fields. 

5. ELLIPSOIDAL BEAMS AND THE EQUIVALENT UNIFORM BEAM 
Here we define and describe ellipsoidal beams.  For these beams it is possible to compute the field 

moments 〈xEx〉, 〈yEy〉, 〈zEz〉 analytically in terms of elliptical integrals.  The results of these calculations 
lead to the concept of the equivalent uniform beam.  This notion says that we may model any (ellipsoidal) 
beam, at least approximately, by a uniform density beam with the same second moments. 

5.1. Ellipsoidally Symmetric Charge Distributions 
We restrict our attention to ensemble distributions 

that are ellipsoidally symmetric in configuration space, 
that is, in (x,y,z) space.  For simplicity we assume an 
upright, centered ellipsoid at the origin.  For an arbitrarily 
oriented ellipsoid we can always apply a change of 
coordinates to achieve this condition.  In this situation the 
charge density ρ(x,y,z) has the form  
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where q is the unit charge, and a, b, c represent the semi-
axes of the reference ellipsoid in the x, y, z directions 
respectively.  The function F(⋅) represents the profile of 
the distribution and is related to the density function f by  

(65) , ∫∫∫ ′′′′′′≡ zdydxdszzyyxxfszyxF );,,,,,();,,(

that is, we have integrated out the momentum dependence.

We compute the spatial moments of this distribution 
the total number of particles, and the semi-axes a, b, c.  Fo
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This integral may be computed by using the change of coo
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with the result 
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  This situation is depicted in Figure 3. 
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where Fn is the nth moment of F, defined as 
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Note that n is not restricted to integer values.  Using a similar approach we can compute the following 
moments of the ellipsoidal distribution: 
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These equations provide us expressions of the semi-axes a, b, c in terms of the second spatial moments 〈x2〉, 
〈y2〉, 〈z2〉, respectively. 

5.2. Computation of the Field Moments 
It is possible to compute the field moments explicitly (in terms of elliptic integrals) for beams having 

ellipsoidal symmetry in configuration space. We start from the following formula for the self-electric 
potential of such a bunch [9][13]: 

(71) 
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where the limit of integration T(x,y,z;t) is defined 
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The formula assumes that the bunch is centered at the (x,y,z) origin.  It is found by inverting Laplace's 
equation for φ in ellipsoidal coordinates (the variable t is actually an ellipsoidal coordinate).  Using Eq. (71) 
the expressions for the field moments are computed to be (see Appendix A) 
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where Γ carries the distribution information (it is a function of the profile F), and RD is the Carlson elliptic 
integral of the second kind [3][4].   

Carlson’s definitions for elliptic integrals are much more convenient in this situation.  Moreover, they 
lend themselves nicely to numeric computation [17].  Definitions for these integrals are as follows: 
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Note that only RF is symmetric in its arguments.  It is possible to express all the conventional elliptic 
integrals (E, F, K, etc.) in terms of RF, RD and RJ. 

5.3. The Equivalent Uniform Beam 
We would prefer to express Eqs. (73) in a form independent of the parameters a, b, c.  Rather we could 

use the variables 〈x2〉, 〈y2〉, 〈z2〉 by employing the relations (70).  First note that 

(75)  ),,(),,( 2/3 rzryrxRrzyxR DD =

for any positive real number r.  Thus, choosing r=1/c2 we have 
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Using this property of RD we can express the self-moments as 
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where the functional Λ(F) is defined as 
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The functional Λ accounts for the effects of the particular beam distribution profile on the beam dynamics.   
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Table 1:  Ellipsoidally symmetric profiles F and the corresponding Λ(F).  The quantity C represents an arbitrary constant. 

Distribution F(s) Λ(F) 

Uniform 





>
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10
1

s
sC

 9295.0
5
3

5
6

≈  

Parabolic (Waterbag) 





>
≤−

10
1)1(

s
ssC

 9352.0
7
3

7
10

≈  

Hollow 
22σ

s

eCs
−

 9462.05
4
3

≈
π

 

Gaussian 
22σ

s

eC
−

 9772.03
≈

π
 

Sacherer discovered that the functional Λ is nearly constant with respect to the distribution F [19].  
Table 1 lists the values of Λ for several common distributions. We see there that its value varies only by 
about 5% for the distributions listed.  The implication is that the second-order spatial moments (i.e., the rms 
envelopes) of any bunched beam behave approximately the same, irrespective of the particular beam 
profile.  In other words, the beam dynamics are only loosely coupled to the actual form of the distribution, 
so long as it is ellipsoidal.  Consequently, we are justified in modeling any laboratory beam with any other 
beam having the same second moments 〈x2〉, 〈y2〉 and 〈z2〉.  This notion leads to the concept of the 
equivalent uniform beam.  This bean is the uniform density beam having the same second moment as the 
actual laboratory beam.  Since the uniform beam has well-defined boundaries, this distribution is typically 
preferred.  Finally, we note in passing that in the case of continuous elliptic beams, the dynamics are 
completely independent of the beam profile. 

Recognize that the semi-axes of the reference ellipsoid a, b, c, are actually the envelopes of the 
uniform beam.  This being so, we can use Eqs. (70) to relate the envelopes of the uniform beam and the 
second spatial moments.  It is common in the literature to denote the envelopes of the equivalent uniform 
beam by X, Y, Z corresponding to the semi-axes a, b, c, respectively.  Thus, for the equivalent uniform 
ellipsoid we have 

(79) [ ] [ ] [ ] zzZyyYxxX ~55~55~55
2/122/122/12 ====== . 

Likewise, it is common to define the effective emittance ε of the equivalent uniform beam in terms of the 
rms emittance according to the following: 

(80) zzyyxx εεεεεε ~5~5~5 ≡≡≡ . 

The effective emittances represent the areas in the phase planes occupied by the equivalent uniform beam. 

We can also determine the second-order moments of the equivalent uniform ellipsoid using their 
definitions (79) and the definition of rms emittance (32).  For the x-plane we find 
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where X'=dX/ds is the rate of change of the equivalent beam envelope with respect to s.  There are 
analogous relations for the other phase planes. 
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The envelope X of the equivalent uniform ellipsoid can be expressed in terms of the Courant-
Snyder parameters through inspection of the extremal points of the trace-space ellipse (for example, see 
Reiser [21]).  The result is 

(82) 
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There are similar expressions for the y and z phase planes. 

6. BUNCHED BEAM ENVELOPE EQUATIONS 
The final result of this section is a set of coupled ordinary differential equations describing the 

evolution of the equivalent uniform beam, given by Eqs. (86).  Although nonlinear, these equations are a 
relatively simple set of ordinary differential equations that may be integrated numerically using standard 
techniques.  The shortcoming of this description is that, aside from space charge, it does not account for 
external coupling between phase planes.  That is, coupling such as that from misaligned quadrupoles, skew 
elements, etc., cannot be modeled.  This drawback is circumvented in the follow section on transfer matrix 
methods by considering all the second-order moments.  

6.1. Equations for Centroid Motion 
The equations for the first-order moments are simply the equations of motion for the centroid of the 

beam, which behaves as a single particle.  The evolution equations for the average values are found with 
reference to Eqs. (25).  By differentiating the first equation of each set in Eqs. (25) then substituting into 
the second we find 

(83) 
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which are a closed set involving only zyx and,, .  They are damped harmonic equations and may be 
solved independently by standard techniques.  Recall that the kα2 are functions of s and that it is possible for 
kα2 to be negative, that is, κα is negative.   

6.2. Bunched Beam RMS Envelope Equations 
Here we develop a set of coupled ordinary differential equations that describe the evolution of the rms 

envelopes of the beam, specifically the quantities zyx ~,~,~ .  These equations describe the behavior of the 
beam extent in a statistical sense.  They can then be used to derive the equations for the equivalent uniform 
beam, as is done in the following subsection. 

From the second-order moment equations (26) we can derive equations involving only the quantities 
zyx ~,~,~ .  Recall that x~ ≡〈x2〉½.  If we differentiate x~  twice with respect to s then use the relations (26) and 

the definition of rms emittance (32) we find a second-order differential equation for x~ .  Proceeding in an 
analogous manner for the y and z planes we are left with the following set of ordinary differential 
equations: 
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Note that these equations involve the moments 〈xEx〉, 〈yEy〉, 〈zEz〉.  As we have seen, these moments are 
generally functions of the zyx ~,~,~ ; so the above set form a coupled set of ordinary differential equations.  
Thus, once we determine the field moments we can solve the system using standard techniques (e.g., 
numerically).  As they stand, these equations are valid for all beam distributions.  In the next subsection we 
consider ellipsoidally symmetric beam distributions. 

6.3. Ellipsoidally Symmetric Beams and the Equivalent Uniform Beam 
Here we substitute the values 〈xEx〉, 〈yEy〉, 〈zEz〉 that we calculated for beams with ellipsoidal symmetry 

into the above rms envelope equations (84).  The result is  
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These are the rms envelope equations for bunched beams with ellipsoidal symmetry. 

Now consider the equivalent uniform beam.  Substituting the value of Λ for the equivalent uniform 
ellipsoid and using relations (79) and (80) we have 
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where we have used relation (75) to eliminate the fractional arguments in the elliptical integrals.  When 
doing numerical computation, however, using the rational arguments for the elliptical integrals is probably 
more stable.  For example, from Eq. (75) it is probably best to compute RD(X2,Y2,Z2) as 
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6.4. Approximate Form of the Envelope Equations 
In the literature, the bunched beam envelope equations are sometimes expressed without explicit 

reference to elliptic integrals, typically by introduction of a “form factor” and/or approximations in lieu of 
the integrals [11].  There, we see algebraic expressions or expressions involving elementary functions 
instead of the special functions.  One way to achieve this form is with the procedure given below.  The 
approximation presented here is accurate when the transverse plane envelopes X and Y are approximately 
equal. 

To simplify the discussion below, we begin by 
immediately introducing the form factor ξ.  It is 
defined by 
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A plot of this function is shown in Figure 4.  From 
the figure we see that ξ has a value of 1 at s=0, 1/3 
at s=1, then asymptotes toward zero as s approaches 
infinity.  Note that ξ has the definition given by the 
expressed analytically in terms of elementary functions

Using the form factor we can approximate the ellip
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where the approximations are most accurate when X≈
approximations for the elliptic integral into the envelop
yields the approximate envelope equations for the equiv

(90) 

)/(
2

3)(

)(
)/(1

2
3)(

)(
)/(1

2
3)(

22

2

2

YX
XYZKZskZZ

YXZ
XYZKYskYY

YXZ
XYZKXskXX

z

y

x

ξγ
γ
γ

ξ
γ
γ

ξ
γ
γ

−−+′
′

+′′

−
+

−
−+′

′
+′′

−
+

−
−+′

′
+′′

where we note the rational argument of the form factor 

For the reminder of this subsection we confirm
performing an expansion of the x and y envelopes X, 
small perturbation parameter ε <<1 (not to be confused
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With this expansion, note that 
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That is, R can be interpreted as the average value of X and Y to first order.  The perturbation parameter 
allows us to keep track of the order of accuracy in our approximations.  As ε increases the beam may 
become increasingly more eccentric in the transverse plane.  In fact, our final results for this section are 
exact for axisymmetric beams. 

Consider the envelope equation for the z plane.  Writing out the elliptic integral explicitly in this case 
gives the following expression: 
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where we have pulled a factor XY from each product in the denominator, then applied a change of 
variables.  The expression under the radical can be written  with the term in 
parenthesis expanded as 
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Thus, 
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and we can approximate the elliptic integral as 
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where we have identified the form factor ξ(⋅).   

Now consider the transverse plane, in particular, the x plane.  Results for the y plane follow in an 
analogous manner.  The elliptic integral can be written 
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where, again, we have pulled a factor XY from each product in the denominator, then applied a change of 
variables.  Now we expand the last two terms in the denominator as 
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Thus, we can approximate the elliptic integral as 
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where the auxiliary function η(⋅) is defined 
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The equality on the second line is found through integration by parts.  From this second relation we can 
express the elliptic integral for the transverse plane in terms of the original form factor 
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Likewise, for the y plane we have 
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Notice that our approximations for the transverse plane elliptic integrals are only accurate to order ε 
whereas the longitudinal plane approximation is accurate to order ε2.  This condition makes sense in that 
the transverse plane approximations are more sensitive to the eccentricity in X and Y than the longitudinal 
approximation. 

7. TRANSFER MATRIX APPROACH 
Here we assume that, to first order, the dynamics of each beamline element n can be represented by a 

matrix Φn, known as the transfer matrix for the element.  Thus, the action of the element on a particle with 
phase space coordinates z would be given by the matrix-vector product Φnz.  In many situations it is 
possible to explicitly calculate the transfer matrix for a particular beamline element a priori, either 
analytically or numerically using the principles of linear systems.  Moreover, it is found that, with a 
conjugation operation, the rms moments of the beam can be propagated using the same transfer matrix Φn. 

For practical numerical simulation we usually separate the action of the external elements and the 
space charge effects.  That is, the beam is propagated through the element according to its external forces, 
and corrections are applied to account for the space charge along the way.  We find that it is possible to 
represent the action of the linearized space charge forces as a transfer matrix.  Consequently, simulating the 
evolution of the moments up to second order requires determination of the transfer matrices for each 
beamline element and the transfer matrix that accounts for space charge. 

7.1. Transfer Matrices and External Elements 
Ignore space charge for the moment.  Referring to Eqs. (16), the equations of motion for the x plane 

can then be put into the matrix-vector form 
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In principle, if we know kx
2(s) and γ(s) there always exists a solution to Eq. (103) of the form [8] 

(105) , )0()()( xΦx ss =

where x(0) is the initial value of x(s), and Φ(s) is the fundamental matrix of the system; it is a matrix 
function of the independent variable s having the following properties: 

(106)  
,)0(

,)()()(
IΦ

ΦAΦ
=
=′ sss

where I is the identity matrix.  We use this fact to develop a numerical algorithm for simulation.  If we 
determine the matrix Φ for each beamline element (say by explicit calculation or by numerical integration 
of the above equation for Φ), then the particle coordinates can be propagated by simple matrix 
multiplication.  (This fact comes from the semi-group property of the fundamental matrix.) 

We can discretize the continuous matrix-vector system (105) by considering only points at the entrance 
and exit locations of each beamline element.  Let Φn denote the fundamental matrix solution for beamline 
element n having length ln evaluated at the final location, that is 

xN 

 
ΦN 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: transfer matrix representation of the beamline 

x3 xN-1 x2 x1 x0 

 
Φ2 

 

 
   Φ1 

 
Φ0 

(107)  )( nn lΦΦ ≡

The constant matrix Φn is known as the transfer matrix for the element n.  Now let xn denote the state of 
the particle at the entrance of the nth beamline element 

(108) , )( nsxxn ≡

where sn is the location of the nth element's entrance.  This situation is shown in Figure 4.  Propagation of 
the particle state from one element to the next is given by the set of discrete equations 

(109)  K,1,01 ==+ nnnn xΦx

Thus, instead of a set of continuous ordinary differential equations we now have a set of discrete transfer 
equations to describe the particle motion.  By the linearity of electromagnet forces we can describe the 
action of each element by its transfer matrix Φn then use a separate process to determine the space-charge 
effects down the beamline.   

Many times we can compute the transfer matrix for a beamline element analytically.  For example, in 
the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are 
negligible, then the transfer matrix is found to be 
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where k is the quadrupole focusing strength, l is the length of the quadrupole, and where the quadrupole is 
focusing in x and defocusing in y.  Note that in this ideal case there is no coupling between phase planes.  A 
description including misalignments would contain nonzero values in the off-diagonal blocks. 

7.2. Space Charge Impulses 
In the previous subsection we saw that, barring space charge, the transfer matrix for each element can 

be used to propagate a particle's state through the element.  In the following subsections we find that the 
same transfer matrix can also be used to propagate the moments of the beam distribution through the 
element.  Consequently, we would like to formulate a transfer matrix representation for space charge 
effects.  Here we develop such a matrix. 

A straightforward approximation that simulates the action of space charge is to "kick" the beam at 
regular intervals.  Specifically, we apply the space charge effect through a section of length ∆s all at once, 
as a momentum impulse.  This technique is equivalent to modeling space charge as a defocusing thin lens.  
Of course to maintain accuracy is it necessary that ∆s be sufficiently small.  The magnitude of the impulse 
is determined by returning to the Newton's inertia equation 

(111) },,{, zyxF
dt

dp
s ∈= αα

α , 

where pα is the momentum component in the α direction and Fs,α is the self force in the α direction.  To 
illustrate the computation we consider specifically the x phase plane.  We start with the expression for the 
force on a beam particle given by Eqs. (12), considering only the term specific to the self force.  
Approximating the derivative dp/dt by finite the differences ∆p/∆t and using the linearized electric field of 
Eq. (59) transforms the above equation into the following approximation: 
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Recognizing that ∆t=∆s/v and converting to our normalized momentum x'≡px/p we have 
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where we have defined the thin lens focal length due to space charge as fsc,x.  Thus, the action of space 
charge in the x plane can be written in transfer matrix form as 
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where ∆s is the length over which the space charge effects are being applied.   
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In the z phase plane the calculations are somewhat different although the result is the same.  There the 
self-force on a particle is Fs,z=qEz, however ∆z'=(1/γ2)∆(∆p/p) so we end up with the same factor of γ in the 
force terms in all planes.  Using the value of Λ for the equivalent uniform beam and the beam perveance K 
defined by Eq. (15), we compute the thin lens focal lengths as 
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The full transfer matrix Φsc that applies the space charge kick over a distance ∆s is then 

(116) . 
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Since  fsc,x depends upon 〈x2〉 and 〈xEx〉, it must be recalculated whenever the dimensions of the beam bunch 
change appreciably.  Likewise for the other defocusing strengths fsc,y and fsc,z.  Specifically we are saying 
that the space charge transfer matrix is a function of the covariance matrix, that is 

(117) . )(σΦΦ scsc =

7.3. Equations for Centroid Motion 
We find the equations that propagate the mean value vector simply by taking the moment of Eq. (109) 

for the full phase coordinate vector zn.  Since the transfer matrix Φn does not depend upon the phase space 
coordinates, we get 

(118) nn1n zΦz =+ , 

or 

(119) nn1n zΦz =+ , 

where  

(120) )( nszzn ≡ , 

the value sn being the location of the entrance to the nth beamline element.  Recall that there are no space 
charge effects for centroid motion.  Therefore, we do not apply any space charge kicks when propagating 
these moments.  We simply multiply nz by the transfer matrix Φn for each element n in the beam line. 

7.4. Equations for the Second-Order Moments 
For simplicity, once again consider only the x phase plane.  The continuous evolution equation for σxx 

can be found by direct differentiation of σxx with respect to s, then applying Liouville's theorem and Eq. 
(103).  From the definition of σxx we find 
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The solution to this matrix differential equation is given (formally) by 

(122) , )()0()()( sss T
xxxx ΦσΦσ =

where Φ(s) is the fundamental matrix solution of Eq. (106), and σxx(0) is the initial covariance matrix for 
the x plane.  (This fact may be checked by direct differentiation.)  The above equation also holds for the 
entire set of second moment σ when using the fully augmented fundamental matrix Φ(s).  Recalling that the 
transfer matrix for an element is found by evaluating the fundamental matrix at the end of the element (i.e., 
Φn=Φ(ln), where ln is the length of the nth element) leads to the following transfer equation for the second-
order moments: 

(123) , T
nnn1n ΦσΦσ =+

where 

(124) . )( nsσσn ≡

We see that advancing the state of the second-order moments through the nth beamline element is 
accomplished by transpose conjugation of σ with the transfer matrix Φn.  However, we must still include 
the effects of space charge. 

Space charge effects are imposed using a transfer equation analogous to (123).  However, here we 
conjugate σ with the space charge transfer matrix Φsc.  Recall that the space charge transfer matrix Φsc is  a 
function of the covariance matrix σ. Therefore, for accurate simulation of long beamline elements it may be 
necessary to split the beamline element into several subsections, applying the space charge kick after each 
subsection.  Specifically, we advance σ by the transfer matrix for a subsection, conjugate by Φsc, and repeat 
until we are through the element. 

7.5. Extensions to the Inhomogeneous Case 
In some particle beam situations the modeling equations are inhomogeneous, that is, they contain a 

forcing term.  For beamline elements, this is the case for dipole magnets, for example when used as beam 
steering magnets (for example, see Appendix A.3 ).  Many control systems also have modeling equations of 
this type.  Let the transfer equations for an inhomogeneous element be given as 

(125)  nnnn1n uΓzΦz +=+

where zn is the 6×1 column vector of phase space coordinates, Φn is the 6×6 transfer matrix, Γn is a 6xM 
matrix, and un is a column vector of length M.  Note that this is still a linear system (in zn and un) only now 
we have a forcing term driven by un.  The vector un represents some external parameters for the element, 
perhaps a control parameter or perhaps an unknown noise source (in this case un would be a random 
variable). 

We can compute the propagation equations for σn simply by unwinding the definition and using the 
above transfer equation.  We get 

(126) ( )( )
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zzσ
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where  
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The 6×M matrix Χn is the cross-correlation matrix between the phase-space coordinates and the input 
vector.  The M×M symmetric matrix Υn is the covariance matrix of the drive vector.  Note that if un is a 
scalar value, say un, then Χn= znu  and Υn=un

2. 

The matrix Γn is given by the structure of the system, representing coupling between the particle state 
and the external drive source un.  Thus, to use the above transfer equations for σn it is necessary to 
determine Xn and Yn.  Typically Xn is zero, it represents the correlation between the drive vector un and the 
coordinates in phase space z.  Most systems are designed to avoid any such correlations.  When un is a 
random variable (representing noise or other unknown), the matrix Yn is the autocorrelation.  For most 
systems it can be determined, at least approximately, through measurement.  When un is deterministic, Yn 
is essentially just un squared, which is easily determined. 

7.6. Homogeneous Coordinates 
Here we again consider inhomogeneous systems, however, now we assume the special form 

(128) , nnn1n uzΦz +=+

where un∈ℜ6 is the external drive vector.  That is, the external driving forces can be described as a vector 
in phase space.  This situation occurs when the effects of an inhomogeneous element behave as translations 
in phase space, such as those produced by an ideal dipole magnet.  In this situation we can form a 
convenient augmented state variable system that has the same form as the homogeneous transfer equations.   

Mathematicians typically use homogeneous coordinates to parameterize the projective spaces Pn.  They 
are also widely used in computer graphics for three-dimensional rendering, since translation, rotation, and 
scaling can all be performed by matrix multiplication [18].  The n-dimensional real projective space ℜPn 
can be described as a set equivalence relations [x0, …, xn] on ℜn+1 where [x0, …, xn]~[wx0, …, wxn] for all 
real w≠0, and such that not all the xi are zero.  Thus, the points of the project space ℜPn are seen to be the 
lines in ℜn+1 that pass through the origin.  These equivalence classes are known as the homogeneous 
coordinates of the projective spaces.  (Another equivalent description of the projective space ℜPn is found 
by identifying all the antipodal points of the sphere Sn.)  The projective space ℜPn can be considered a 
differentiable manifold with the atlas consisting of n+1 charts {Ui,φi}i=0

n where Ui is the set of equivalence 
relations [x0, …, xn] such that xi≠0, and φi:Ui → ℜn is the bijective coordinate map  

(129) )/,ˆ,,/(],,,[: 00 iniinii xxxxxxxx KKaKKφ . 

The caret indicates omission of the coordinate.  Note that the union ∪i=0
nUi covers all of ℜPn.  More aptly, 

note that the coordinates of the n+1 chart consist of the following equivalence relations: 

(130) . n
nnni xxxxxx ℜ∈∀= −−−

− ),(]1,,[),,( 101010
1 KKKφ

Thus, Ui is seen to be the set of all lines in ℜn+1 passing through the plane {(x0,…,xn)∈ℜn+1xn=1}.  We 
shall use the homogeneous coordinates of this chart. 

Let the augmented phase space coordinate ζ be 

(131) . ( )Tzzyyxx 1
1

′′′=







≡

z
ζ

Then system (128) can be written in the form 

(132) ,  nn1n ζΘζ =+

where the 7×7 matrix θn is defined as the augmented square matrix 
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(133) . 







=

10
uΦ

Θ nn
n

This is exactly the form of the homogeneous transfer equations.  Therefore, if we only encounter 
inhomogeneous transfer systems of the special form given above, by employing homogeneous coordinates 
we can convert back to homogeneous transfer equations. 

For envelope calculations consider the modified covariance matrix τ formed from the phase space 
vector ζ according to 

(134) Tζζτ ≡ . 

To simplify the discussion, consider only the x-plane phase space.  In the homogeneous coordinates the x-
plane phase coordinates are given by  

(135) . ( )Txx 1
1

′=







≡

x
ξ

Thus, the modified x-plane covariance matrix τxx is formed by 
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We see that in the homogeneous phase space coordinates the covariance matrix τ contains the original 
covariance matrix σ plus the mean value vector z .  Moreover, transpose conjugation of the covariance 
matrix τxx by the transfer matrix Θn yields the following augmented system: 

(137) 












+
++++==+ 1TTT

TTTTT
T

nnn

nnnnnnnn
nnn1n uΦz

uzΦuuΦzuuzΦΦσΦΘτΘτ . 

The upper left block is exactly the covariance transfer equation for the inhomogeneous system (128).  The 
diagonal blocks are the transfer equation, and its transpose, for the mean value vector.  Consequently, both 
the transfer equation for the mean value evolution and the covariance evolution are included in the 
modified transfer system. 

To make the use of homogeneous coordinates more explicit, consider the case of an ideal dipole-
correcting magnet in the x phase plane.  The effect of such a device is to add an impulsive kick in the 
particle momentum of intensity ∆x'.  Thus, the modified transfer matrix for the x phase plane would appear 
as 

(138) . 















′∆=
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10

001
xdipoleΘ

The effects of the ideal dipole are found by transpose conjugation of the modified covariance matrix τxx by 
the above transfer matrix; we have 
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We can clearly see the effects of an impulsive kick on the entire beam, both in the centroid behavior and 
the rms envelope behavior. 

8. SUMMARY AND CONCLUSION 
Beam envelope simulation as described here is a computationally inexpensive way to obtain particle 

beam behavior to first order.  Rather than propagating an ensemble of particles then computing the statistics 
to determine the rms beam properties, we propagate the rms beam properties directly.  We have seen that 
theoretically that this is a valid approach.  However, there are clearly limitations to simulation results 
generated in such a manner.  The techniques described here are intended to give a quick insight into general 
beam behavior and not to be used as a tool for detailed dynamics analysis.  Consequently the simulation 
methods here are appropriate for initial off-line design studies and for on-line model reference control 
applications, where fast real-time response is essential.   

The validity off our analysis typically comes into concern because, by practical considerations, we are 
forced to make some simplifying assumptions to implement the simulation procedures.  The first 
assumption we make is the applicability of Liouville's theorem to form the evolution equations for the 
distribution's moments.  Technically, Liouville's theorem is valid only in 6N dimensional phase space for 
collisionless system, where N is the number of beam particles.  However, it is approximately true whenever 
the collective fields of the beam can be accurately described by smooth functions.  Thus, we have assumed 
that our beam is populous enough, and compact enough for this condition to be true.  Another circumstance 
where this assumption holds is for relatively cold beams.  Both situations assume that the Debye length of 
the beam is small enough so that any particle see mostly collective fields and there are few collision-like 
encounters.  The next critical assumption comes in the form of ellipsoidal symmetry.  That is, we assume 
that the beam exhibits ellipsoidal symmetry in configuration space.  Under this assumption we are able to 
analytically compute the effects of space charge on the moment dynamics.  Unfortunately it is known that 
ellipsoidally symmetric beams are not, in general, stationary beams [21], the only one of this type is the 
KV, or micro-canonical distribution.  Thus, we must assume that our true beam is very close to an 
ellipsoidal one.  Fortunately ellipsoidal beams can accurately represent many laboratory beams. 

The last major assumption is that of linearity.  Specifically, we assume not only that all external forces 
are linear, but also that internal forces (i.e., self forces) are linear.  Consequently any nonlinear effects from 
a beamline element cannot be modeled, for example, fringe fields, higher order field components, etc.  Our 
linear model for the internal fields essentially constitutes the assumption of constant rms emittances.  This 
is true for both the rms envelope equations and the transfer matrix method.  There is no known practical 
method for simulating emittance growth using only beam statistics.  Currently, only full multiple particle 
simulations have this capability.  However, it is possible to assign emittance growths based on analytic 
approximations or a priori knowledge of emittance values.  In the envelope equations we just assign the 
emittance values directly, for the transfer matrix approach we multiply the second-order covariant by the 
growth factor. 
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APPENDIX A: TRANSFER MATRICES FOR COMMON BEAMLINE ELEMENTS 
We describe here the transfer matrices for some beamline elements in common use.  As was done with 

the σ matrix, we decompose a general transfer matrix Φ into 2×2 composite matrices according to the 
following: 

(A.1) . 
















=

zzzyzx

yzyyyx

xzxyxx

ΦΦΦ
ΦΦΦ
ΦΦΦ

Φ

In most cases only the block diagonal sub-matrices Φxx, Φyy, and Φzz are nonzero.  Nonzero values of the 
off-diagonal sub-matrices indicate coupling between phase planes. 

Many transfer matrices exhibit a semi-group property.  Specifically, if we denote the transfer matrix of 
an element of length ∆s as Φ(∆s), then the transfer matrix for two such elements is Φ(∆s)Φ(∆s).  In general, 
for arbitrary lengths ∆s1 and ∆s2 we have 

(A.2) )()()( 2121 ssss ∆∆=∆+∆ ΦΦΦ . 

A.1  Drift Space 
The transfer matrix Φ for a drift space of length ∆s is given in terms of its nonzero diagonal blocks 

(A.3) , 
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1 sss

zzyyxx ΦΦΦ

where the sub-matrix for the z plane assumes that the coordinates are (z,z').  If the coordinates are (z,∆p/p) 
then the sub-matrix is 

(A.4) .  






 ∆
=
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/1 2γs

zzΦ

This transfer matrix has the semi-group property. 

A.2  Quadrupole 
In the case of an ideal quadrupole lens where the forces are linear throughout and the fringe fields are 

negligible, the transfer matrix block diagonals are 

(A.5) 
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where Φfoc represents the block diagonal of the focusing plane and Φdef represents the block diagonal of the 
defocusing plane of the quadrupole.  The quantity l is the length of the quadrupole and k is the quadrupole 
focusing strength, it has the values 

(A.6) 

2
01̀

mc
qV

a
k

mc
qGk

esq

mag

γβ

βγ

=

=

 

where kmag is the value for a magnetic quadrupole and kesq is the value for an electrostatic quadrupole.  Here 
G is the magnetic field gradient at the beam axis, V0 is the electrostatic electrode potential and a is the 
aperture of the quadrupole. 
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A.3  Dipole Steering Magnet (As a Thin Lens) 
We may treat a dipole magnet as a thin lens by again approximating the time derivative of momentum 

as a finite difference in the equations of motion.  The equation of motion for a particle in a dipole field of 
strength B is 

(A.7) 
,)0,,()1,,(

,

yx BBzyxcq

q
dt
d

×′+′′=

×=

β

Bvp
 

where we have assumed the magnetic field is constant throughout the magnet.  Approximating the 
derivative by a finite difference gives us the equations 

(A.8)  
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Using the relations ∆x'=∆px/p, ∆y'=∆py/p, ∆z'=(1/γ2)∆px/p, we can form the transfer system 
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(A.10) 
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are the cyclotron phase advances in the x and y directions respectively. 

Since the contributions from the phase space coordinates are usually small we can often approximate the 
dipole effect using only the additive term in the above.  Referring to Section 7.5, in this case we have Γ=I 
and  
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A.4  Dipole Steering Magnet (As a Thick Lens) 
We present the full solutions for particle trajectories through constant magnetic fields in the transverse 

directions.  These solutions can be computed analytically and put into transfer matrix form.  From the full 
solutions one can derive transfer matrices for dipole magnets having fields directed in only one plane.  
Starting from the Lorentz forces the differential equations describing the motion are 
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where 

(A.13) 
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are the cyclotron frequencies in the x and y directions.  The above equations can be solved to give us the 
transfer matrix  

(A.14) 
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where  

(A.16) 22
yxc ωωω += . 

Note that again Γ=I.  Note also that in the limit as ∆s→0 the transfer matrix and drive vector approach the 
thin lens approximation but with the drift component. 
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A.5  Bending Magnet 
In a bending magnet the 

design trajectory is where the 
force from centripetal 
acceleration exactly balances 
the magnetic force, it is an arc 
with radius R0.  To analyze a 
bending magnet we usually 
employ a perturbational 
analysis around the design 
trajectory in cylindrical 
coordinates (r,θ,z).  Figure 5 
demonstrates how we construct 
the beam coordinates (x,y,z) as 
perturbations around the 
synchronous trajectory of r=R0.   

Clearly the bend angle α is 
a parameter of the bending 
magnet.  The radius of 
curvature R0 is also a parameter 
of the bend; along with the 
design energy it determines the 
strength of the magnetic field B0=Bz(R0) on the design trajectory.  However, we also require a third 
parameter, the field index n.  The field index is defined 

r

z

θ

R0

x
y

z
s

α

Bz

Figure 5: sector bending magnet 
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The field index is simply the normalized derivative of the bending field evaluated at the design radius.  In 
order to provide focusing in both transverse planes it is necessary that the bending field decrease in the 
radial direction.  Kerst and Serber first studied these effects for the betatron [14], they found for focusing in 
both transverse planes it is necessary that 0<n<1.   

To find the transfer matrix for a bending magnet we start with the equations of motion in cylindrical 
coordinates.  Since magnetic fields cannot accelerate, γ is constant.  We also assume that there is no 
magnetic field in the θ direction.  With these considerations the equations of motion are 
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The first-order variation in both magnetic field components Br and Bz can be written in terms of the field 
index n using the fact that ∇×B=0.  We have 
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where we have assumed that Br(z=0)=0 by design.  Now we assume a perturbation around the design 
trajectory according to  

(A.21) 
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where ε<<1 is a dimensionless parameter used to keep track of the order of approximation.  Note that we 
have identified the cylindrical coordinate z with subscript cyl whereas the beam coordinate z is unadorned.  
Note also that the path length parameter s is related to θ by 
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Also we have the convenient physical relations 
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where ωc is the cyclotron frequency. 

The transfer matrix solution to the above linear perturbation is given as follows: 
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In addition, we also have the off-diagonal blocks 

(A.25) 
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where 
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(A.26) 
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The above description is for a bend in the horizontal plane to the right (positive x direction).  For a bend to 
the left replace Φxz and Φzx by -Φxz and -Φzx, respectively. 

A.6  RF Gap (As a Thin Lens) 
Here we treat the effects of a general RF gap as a thin lens.  The energy gain in the gap ∆W is given in 

terms of the Panofsky equation [22] 

(A.27) φcos0TLqEW =∆ , 

where q is the unit charge, E0 is the longitudinal electric field in the gap, T is the transit time factor (the 
ratio of the energy gained in the RF gap to that of a DC gap of the same field amplitude), and φ is the RF 
phase of the synchronous particle at the center of the gap.  Along with h, the (integer) number of the field 
harmonic, we assume that these are the parameters of the RF gap.   

The electric fields in the gap cause longitudinal focusing and radial defocusing, as well as the change 
in energy.  Here we present the thin lens focusing constants to account for these effects.  The values of x', y' 
and z' tend to decrease with increasing longitudinal momentum simply because they are normalized by this 
quantity.  However, the unnormalized values px, py, and ∆p are constant with an increase in longitudinal 
momentum.  Thus, the action of the RF gap is produced by first unnormalizing the momentum components, 
transforming by a thin lens, then normalizing the momentum components with respect to the new, larger 
longitudinal momentum.  For example, for the x phase plane we have 

(A.28) 

,
)(

,
,)(

1,1,
1

,1,

,

mc
p

p
p

x

xkpp
xmcxpp

f

nx

f

nx
n

nxnxnx

nininx

βγ

βγ

++
+

+

==′

+=

′=′=

 

where the subscript i refers to quantities with initial energy and the subscript f refers to quantities with the 
final energy.  The following transfer matrix captures this sequence of operations: 
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Likewise, for the other phase planes we have 

(A.30) 
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Note that 
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(A.31) 
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where ER is the rest energy of the beam particle (mc2).  The values of the focusing coefficients are found by 
integrating the electromagnetic fields in the gap.  We have (approximately, for example see [22]) 
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where  

(A.33) ,)sin(0222 φ
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−≡ LqE

mc
h
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k  

γβ , are the relativistic parameters evaluated at the average energy 

(A.34) 2/WWW i ∆+= , 

and h is the field harmonic at which the gap is operating. 

If the longitudinal coordinates are given as (z,∆p/p) the corresponding transfer block is then 

(A.35) 
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This value may be used to approximate the previous matrix since 22 /γγ  is typically close to unity. 
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APPENDIX B: SELF-FIELD MOMENT CALCULATION 
We shall calculate the moment 〈zEz〉.  The other field moments follow a similar procedure.   
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Substituting the value for potential φ from Eq. (71) we have 
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Since the integrations are independent we may switch the order so the integration with respect to t is last.  
Now employ the change of coordinates 
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along with the appropriate limits of integration to yield 
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where the function u(θ,φ) is defined 
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We now switch the order of integration again and apply the substitution 
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Using the definitions 
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the original integration is reduced to  
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where we have integrated out the distribution dependence. 

 41



LA-UR-02-4979 
 

Note that the function u(θ,φ) can be written 
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Using this decomposition and the fact that 
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further reduces Eq. (B.10) to 
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If we employ the substitution 
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we find that 
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where RD is the Carlson elliptic integral of the second kind. 
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